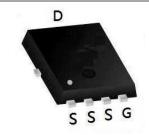
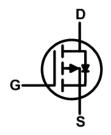


- ★ 100% EAS Guaranteed
- ★ Green Device Available
- ★ Super Low Gate Charge
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology

Product Summary Green


BVDSS	RDSON	ID
-30V	6.5mΩ	-65A


Description

The XR70P03D is the high cell density trenched P-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The XR70P03D meet the RoHS and Gree Product requirement 100% EAS guaranteed with full function reliability approved.

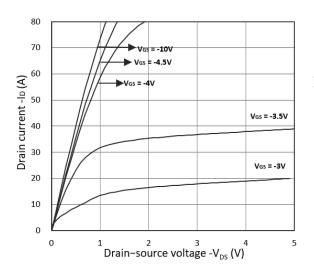
PDFN3333-8L Pin Configuration

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	
Drain-Source Voltage		V _{DS}	-30	V
Gate-Source Voltage		V _{GS}	±20	V
Continuos Barin Comente 40/4	T _C =25°C		-65	A
Continuous Drain Current@-10V ¹	T _C =75°C	- I D	-35	
Pulsed Drain Current ²		Ірм	-175	А
Single Pulse Avalanche Energy ³	EAS	31	mJ	
Avalanche Current	I _{AS}	-70	А	
Total Power Dissipation⁴ T _C =25°C		P _D	31.2	W
Operating Junction and Storage Temperature Range	TJ, TSTG	-55 to+150	°C	

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance from Junction-to-Ambient ¹	R _{0JA}	61	°C/W
Thermal Resistance from Junction-to-Case ¹	Rелс	4	°C/W


Electrical Characteristics T_c = 25°C, unless otherwise noted

Parameter		Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Static Characteristics		.	1			l	
Drain-Source Breakdown Voltage		V _{(BR)DSS}	$V_{GS} = 0V, I_D = -250\mu A$	-30	-	-	V
Gate-body Leakage current		I _{GSS}	V _{DS} = 0V, V _{GS} = ±20V		-	±100	nA
Zero Gate Voltage Drain Current	T _J =25°C	I _{DSS}	V _{DS} = -24V, V _{GS} = 0V	-	-	-1	μА
	T _J =55°C			-	-	-5	
Gate-Threshold Voltage		V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-1.0	-1.6	-2.5	V
D. i. O. D. i.i.	. 2	_	V _{GS} = -10V, I _D = -12A	-	6.5	9.3	mΩ
Drain-Source On-Resistance	ee-	R _{DS(on)}	V _{GS} = -4.5V, I _D = -8A	-	9.5	14.5	
Forward Transconductance		g fs	$V_{DS} = -5V, I_{D} = -20A$	-	28	-	S
Dynamic Characteristic	s	•	,	•			•
Input Capacitance		Ciss		-	4320	-	
Output Capacitance Reverse Transfer Capacitance		Coss	$V_{DS} = -15V, V_{GS} = 0V, f = 1MHz$	-	529	-	pF
		Crss		-	487	-	
Switching Characterist	ics	•	,		•		•
Gate Resistance		Rg	$V_{DS} = 0V, V_{GS} = 0V, f = 1.0MHz$	-	4.0	-	Ω
Total Gate Charge		Qg		-	45	-	nC
Gate-Source Charge		Q _{gs}	$V_{GS} = -10V, V_{DS} = -15V,$ $I_{D} = -15A$	-	8.5	-	
Gate-Drain Charge		Q_{gd}		-	12.8	-	
Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time		t _{d(on)}		-	18.9	-	
		tr	$V_{GS} = -10V, V_{DD} = -15V,$	-	15.7	-	
		t _{d(off)}	$R_G = 2.5\Omega$. $I_D = -15A$		64.8	-	nS nS
		t _f		-	36.5	-	1
Drain-Source Body Dio	de Charac	teristics	<u> </u>	I	l	l	1
Diode Forward Voltage ²		V _{SD}	I _S = -1A, V _{GS} = 0V	-	-	-1	V
Continuous Source Current ^{1,5}		Is	V _G =V _D =0V , Force Current	_	-	-65	Α

Note:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width $\leq 300 us$, duty cycle $\leq 2\%$
- 3. The EAS data shows Max. rating . The test condition is V_{DD} = -25V, V_{GS} = -10V, L= 0.1mH, I_{AS} = -25A
- 4.The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

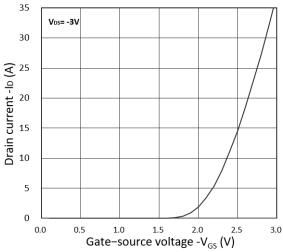
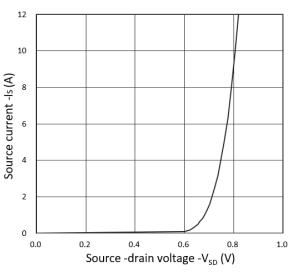



Figure 1. Output Characteristics

Figure 2. Transfer Characteristics

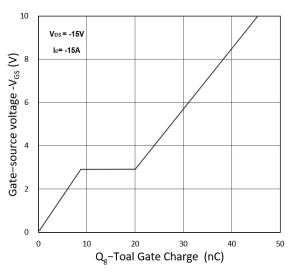
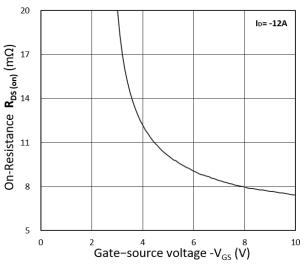



Figure 3. Forward Characteristics of Reverse

Figure 4. Gate Charge Characteristics

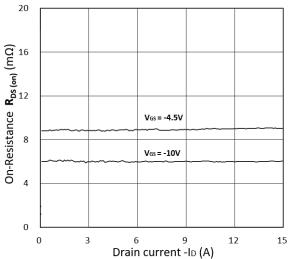


Figure 5. R_{DS(on)} vs. V_{GS}

Figure 6. R_{DS(on)} vs. I_D

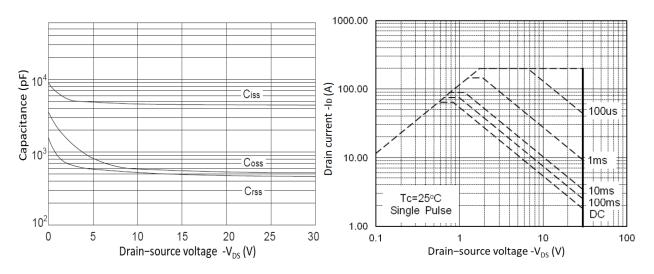


Figure 7. Capacitance Characteristics

Figure 8. Safe Operating Area

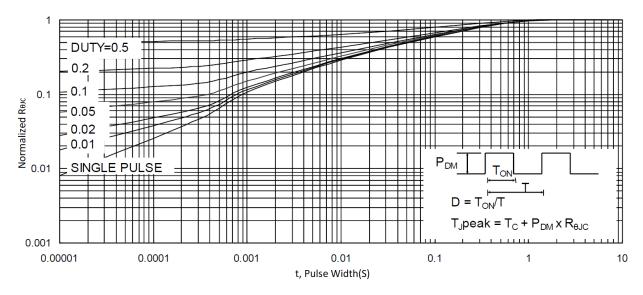


Figure 9. Normalized Maximum Transient Thermal Impedance

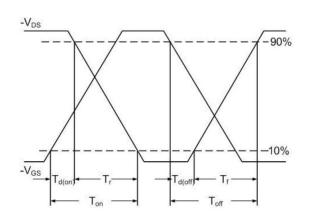
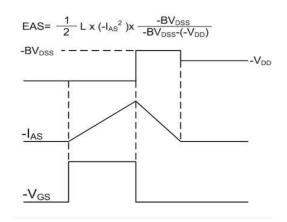
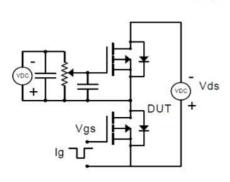
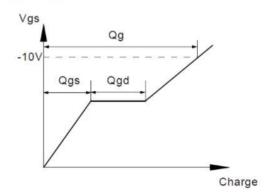
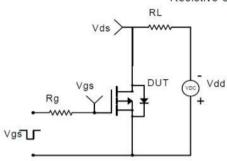


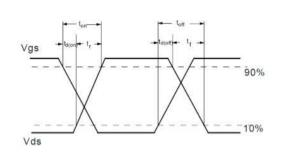
Figure 10. Switching Time Waveform

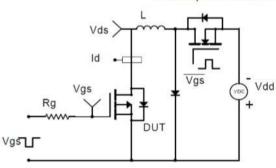


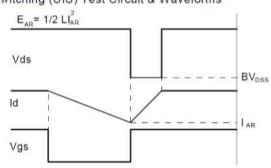

Figure 11. Unclamped Inductive Switching

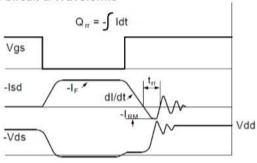

Waveform

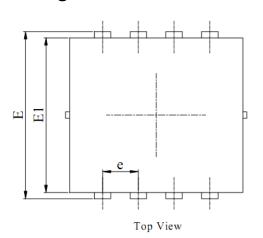

Test Circuit

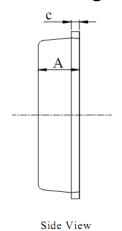

Gate Charge Test Circuit & Waveform

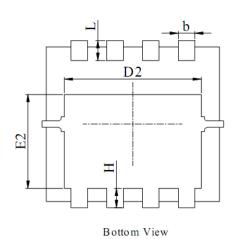


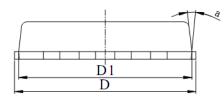

Resistive Switching Test Circuit & Waveforms


Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

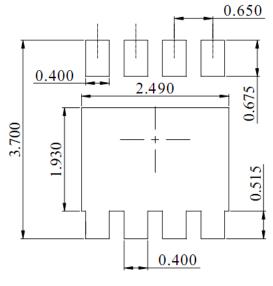

Diode Recovery Test Circuit & Waveforms







Package Mechanical Data-PDFN3333-8L-Single



Front View

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M,1994.
- 2. ALL DIMNESIONS IN MILLIMETER (ANNGLE IN DEGREE).
- DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS.

DIM.	MILLIMETER				
	MIN.	NOM.	MAX.		
A	0.70	0.75	0.80		
b	0.25	0.30	0.35		
С	0.10	0.20	0.25		
D	3.00	3.15	3.25		
D1	2.95	3.05	3.15		
D2	2.39	2.49	2.59		
Е	3.20	3.30	3.40		
E1	2.95	3.05	3.15		
E2	1.70	1.80	1.90		
e	0.65 BSC				
Н	0.30	0.40	0.50		
L	0.25	0.40	0.50		
a			15°		

DIMENSIONS:MILLIMETERS